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Thermodynamically self-consistent theory for the Blume-Capel model
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We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-
dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two
coupled partial differential equations. The theory provides a comprehensive and accurate description of the
phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the
coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series
expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like
critical behavior along thel line and the wing critical lines, and a tricritical behavior governed by mean-field
exponents.
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I. INTRODUCTION

The self-consistent Ornstein-Zernike approximati
~SCOZA! has been introduced some time ago by Hoye a
Stell @1# as a method for obtaining thermodynamic and str
tural properties of simple fluid and lattice-gas systems. L
the mean-spherical approximation, this approach is base
the assumption that the direct correlation functionC(r ),
which is related to the two-particle distribution functio
G(r ) via the Ornstein-Zernike~OZ! equation, is proportiona
to the pair potential outside the hard-core region~or, for a
lattice gas, forrÞ0). But the dependence of the proportio
ality constant on density and temperature is determined
such a way that the same free energy is obtained from fl
tuation theory—the so-called compressibility or suscepti
ity route—and from integration of the internal energy wi
respect to the inverse temperature. For the lattice gas
nearest-neighbor attractive interactions~or equivalently, for
the ferromagnetic spin-1

2 Ising model!, this thermodynamic
self-consistency is embodied in a partial differential equat
whose solution, along with the requirement of single s
occupancy, fixesC(r ) @and thusG(r )] uniquely. Because of
numerical difficulties, this equation was only solved recen
@2#, showing that the SCOZA provides an accurate desc
tion of the properties of the three-dimensional~3D! Ising
model over most of the phase diagram. The predicted va
of Tc for the various cubic lattices are within 0.2% of the
best estimates, the effective critical exponents are faithfu
the true behavior aboveTc except in a very narrow neigh
borhood of the critical point, and the zero-field magnetiz
tion is described asymptotically by the nonclassical expon
b50.35 @3#. The SCOZA has been also extended ton com-
ponent and continuous spins@4#, and accurate results hav
been obtained for the hard-core Yukawa fluid@5# and for
several spin systems in the presence of quenched diso
@6#.

The purpose of this paper is to apply the same type
approximation to the Blume-Capel model@7#, a special case

*The Laboratoire de Physique The´orique des Liquides is the
UMR 7600 of the CNRS.
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of the spin-1 Blume-Emery-Griffiths~BEG! model @8#,
which represents a variety of interesting physical systems
particular 3He-4He mixtures. This model has played an im
portant role in the development of the theory of tricritic
phenomena@9,10# and has been very actively studied ov
the years, following the original mean-field treatment
BEG @8#. Various methods like series expansions@11#,
renormalization-group calculations@12#, and Monte Carlo
simulations@13# have been used to describe the first- a
second-order regions, the tricritical region, and the crosso
between them. A study of the coexistence curve using
mean-spherical approximation has also been proposed
cently @14#. There is no analytical theory, however, which
able to provide a comprehensive and accurate descriptio
the phase diagram in all regions~including the ‘‘wing’’
boundaries in a nonzero magnetic field!. As we shall see in
the following, the SCOZA reaches this goal quite succe
fully without requiring prohibitive computational effort. In
particular, the coordinates of the tricritical point~TCP! for
the various cubic lattices are predicted with very good ac
racy and the universal asymptotic tricritical behavior is w
described. This suggests that the SCOZA is a reliable the
for exploring three-dimensional systems that exhibit first
der as well as continuous transitions.

The paper is organized as follows: in Sec. II we descr
the theory and derive the partial differential equations t
encode the thermodynamics of the model, in Sec. III
present our results for the phase diagram, and in Sec. IV
discuss the universal properties in the second-order and
ritical regions. Our conclusions are drawn in Sec. V. T
extension of the theory to the full spin-1 Hamiltonian is pr
sented in Appendix A and details on the scaling behav
near the TCP are reported in Appendix B.

II. THEORY

The Blume-Capel~BC! model @7# is defined by the
Hamiltonian

HBC52J(̂
i j &

SiSj1D(
i

Si
22h(

i
Si , ~1!
©2001 The American Physical Society11-1
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where Si50,61 is the spin variable at each sitei of a
d-dimensional lattice and the first term sums over all near
neighbor ~n.n.! pairs. This is a special case of the BE
Hamiltonian@8#, HBEG5HBC2K(^ i j &Si

2Sj
2 , which is a mi-

croscopic model for3He-4He mixtures.Si50 represents a
3He atom at sitei andSi561 a 4He atom, with the sign in
the latter case describing the superfluid degree of freedom
this interpretation, the coupling constantJ.0 is a potential
that promotes superfluidity, the crystal fieldD reflects the
chemical-potential difference between the isotopes, anK
represents the difference in the van der Waals interact
between the isotopes~the actual value ofK/J is small, so
that settingK50 is a sensible approximation!. The magne-
tization m5^Si& identifies to the superfluid order paramet
andx512^Si

2& represents the3He concentration. As is wel
known, the phase diagram of3He-4He mixtures presents
line of second-order transitions~the so-calledl line! at high
temperatures and high4He concentrations and a coexisten
region associated with a first-order transition at low tempe
tures. The BC Hamiltonian may also describe a spin-1

2 Ising
model with a fractional concentrationx of nonmagnetic im-
purities in thermal equilibrium with the spin system~an-
nealed dilution!. D is then interpreted as the chemical pote
tial that controls the impurity concentration~the case of
quenched dilution has been studied in Ref.@6#!.

Our theory for the Blume-Capel model is based on
Ornstein-Zernike approximation for the direct correlati
function Ci j , which is the inverse of the connected pair co
relation functionGi j 5^SiSj&2^Si&^Sj&, i.e.,

(
k

GikCk j5d i j , ~2!

whered i j is the Kronecker symbol. This OZ equation may
considered as the definition ofCi j . It is also a consequenc
of the Legendre transform

G5F1(
i

himi ~3!

that defines the Gibbs free energyG from the free energy
F52kBTln Tr exp@2HBC /(kBT)#. In Eq. ~3!, a site-
dependent magnetic fieldhi has been introduced for conve
nience and̂ Si&52]F/]hi5mi is the local magnetization
The second functional derivatives ofF andG with respect to
the local fields and local magnetizations generateGi j and
Ci j , respectively,

Gi j 52
]2F̃

]h̃i]h̃ j

, ~4!

Ci j 5
]2G̃

]mi]mj
, ~5!

whereF̃5bF,G̃5bG, and h̃i5bhi @b5(kBT)21 is the in-
verse temperature#. For a uniform magnetic fieldhi5h, the
system is translationally invariant and the correlation fu
04111
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tions only depend on the vectorr that connects the two sites
The OZ equation then simplifies to

Ĉ~k!Ĝ~k!51 ~6!

in Fourier space.
In contrast withG(r ), the direct correlation function is

expected to remain a short-ranged function even in the c
cal region @specifically, Ĉ(k50),1`]. In the following,
we shall assume thatC(r ) has always the same range as t
pair potential. This OZ ansatz is theonly approximation in
our theory. Since the exchange interaction in the Blum
Capel Hamiltonian is limited to nearest-neighbor~nn! sites,
this amounts to setting

C~r !5c0~ J̃,D̃,m!d r ,01c1~ J̃,D̃,m!d r ,e ~7!

or in Fourier space,

Ĉ~k!5c0~ J̃,D̃,m!@12z~ J̃,D̃,m!l̂~k!#, ~8!

where e is a vector from the origin to one of its neare
neighbors,l̂(k)5(1/c)(ee

ik.e is the characteristic function
of the lattice (c is the coordination number!, and z5
2(c1 /c0)c. c0 andc1 ~or, equivalently,c0 andz) are func-
tions of J̃5bJ,D̃5bD, andm, which will be obtained be-
low from the solution of the SCOZA partial differentia
equations ~in the simpler mean-spherical approximatio
studied in Ref.@14#, one has justc152 J̃). It is worth no-
ticing that the range ofC(r ) is exactly limited to n.n. sepa
ration in one dimension. This can be easily checked by us
the transfer-matrix method~see, e.g., Ref.@15#! to calculate
G(r ) and then inverting the OZ equation to get the dire
correlation function~this result holds for the most gener
spin-1 Hamiltonian with nn pair interactionsH5HBC

2K(^ i j &Si
2Sj

22L(^ i j &SiSj (Si1Sj ), which is used as a
model for ternary mixtures@16#!. C(r ) has the same spatia
structure in the limit of infinite dimension~where the mean-
field approximation becomes exact!, and we expect that Eq
~8! is a reasonable assumption ford53. A major conse-
quence is thatG(r ) is given in any dimension by

G~r !5
1

c0
P~r ,z!, ~9!

where

P~r ,z!5
1

~2p!dE2p

p

dk
e2 ik.r

12zl̂~k!
~10!

is the lattice Green’s function@for instance,l̂(k)5 1
3 (coskx

1 cosky1 coskz) for the simple cubic lattice#. The variablez
~with 0<z<1) is related to the second-moment correlati
length j defined byĜ(k);Ĝ(0)(11j2k2), k→0, where
bĜ(0)[]m/]h5b/@c0(12z)#. Specifically, one has 2dj2

5z/(12z) for the simple hypercubic lattice. Therefore, for
given value of the crystal-fieldD̃, the conditionz51 gives
the locus of diverging correlation length and diverging su
1-2
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THERMODYNAMICALLY SELF-CONSISTENT THEORY . . . PHYSICAL REVIEW E63 041111
ceptibility in the (J̃,m) plane. This defines a spinodal surfa
in the (J̃,D̃,m) space; in particular,z( J̃,D̃,m50)51 corre-
sponds to thel line in the region of theh50 phase diagram
where the transition is continuous.

In order to determine the two unknown functionsc0 andz,
we impose thermodynamic self-consistency. To this end,
consider the change in the free energy associated with in
tesimal changes inJ̃,D̃ and h̃:

dF̃52d J̃(̂
i j &

^SiSj&1dD̃(
i

^Si
2&2dh̃(

i
^Si&. ~11!

In terms of the pair-correlation function, this gives

dF̃/N52
1

2
@G~r5e!1m2#dl1@G~r50!1m2#dD̃2mdh̃,

~12!

whereN is the number of lattice sites and the coordinati
numberc has been absorbed in the new inverse tempera
variablel5cJ̃. The corresponding change in the Gibbs fr
energy is

dG̃/N52
1

2
@G~rÄe!1m2#dl1@G~r50!1m2#dD̃1h̃dm.

~13!

On the other hand, from Eq.~5!, we have

]2G̃/N

]m2
5Ĉ~k50!. ~14!

Therefore, in order to get the same Gibbs free energy w
integrating with respect tol,D̃, or m, the following Maxwell
relations must be satisfied:

]Ĉ~k50!

]l
52

1

2

]2

]m2
@G~rÄe!1m2#, ~15a!

]G~r50!

]l
52

1

2

]G~r5e!

]D̃
, ~15b!

]Ĉ~k50!

]D̃
5

]2

]m2
@G~r50!1m2#. ~15c!

Clearly, only two of these equations are independent an
the following we shall use Eqs.~15a! and ~15b!.

ReplacingD̃ by the new variablet5(11 1
2 eD̃)21 which

varies from 0 to 1, and inserting the explicit expressions
Ĉ(k) at k50, andG(r ) at r50 and r5e that are obtained
from Eqs. ~8!–~10!, we finally get the two SCOZA equa
tions,
04111
e
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]

]l
c0~12z!5212

1

2

]2

]m2

P~z!21

zc0
, ~16a!

]

]l

P~z!

c0
5

1

2
t~12t!

]

]t

P~z!21

zc0
, ~16b!

whereP(z)[P(r50,z) and the relationP(r5e,z)5(P(z)
21)/z has been used. Given the appropriate boundary c
ditions, integration of these coupled partial differential equ
tions ~PDE! in the two unknown functionsc0(l,t,m) and
z(l,t,m) gives at once the thermodynamics of the Blum
Capel model in the whole parameter space. Indeed, acc
ing to Eq.~13!, the Gibbs free energyG̃(l,t,m) can be ob-
tained in the same run of integration from the integral
2 1

2 @G(rÄe)1m2# with respect tol ~thanks to the thermo-
dynamic consistency, this is equivalent to integration w
respect toD̃ or to m). At fixed l andt, G̃ as a function ofm
has the same shape as in mean-field theory@8#, except that
the unstable region inside the spinodal is excluded. At
critical temperature, there is a single minimum atm50 for
t.t t or three minima at 0 and6Dm @with G̃(6Dm)
5G̃(0)] for t,t t . This defines the second- and first-ord
parts of theh50 phase diagram, respectively. The maxim
of the spinodal curves in theT2m plane~corresponding to
]2G/]m250) define the lines of second-order critical poin
i.e., thel line for t.t t (m50) and the wing critical lines
for t,t t @m56mc(t)#. In the latter case, the correspon
ing critical field is given by6hc5](G/N)/]mum56mc

. The

coordinates (Tt ,t t) of the TCP can be determined accurate
by observing the change in the convexity of the spinoda
m50.

From a computational point of view, the coupled PDE
Eqs. ~16!, define an initial value problem. The inverse tem
perature variablel plays the role of time and the equation
describe howz(l,t,m) andc0(l,t,m) propagate forward in
time. We thus need to specify the initial condition atl50
and the boundary conditions att51, t50, and m561
~actually, because of symmetry, one can restrict the dom
of integration tom>0).

The initial conditionJ5l50 corresponds to the high
temperature limit where the spins are independent. The p
erties of the system can be calculated exactly and the co
lation functions are nonzero only atr50. This implies that
z50 and Ĉ(0)[]h̃/]m5c0. The inverse susceptibility is
readily obtained from the expression of the magnetizatio

m5
eh̃2e2h̃

eD̃1eh̃1e2h̃
, ~17!

which yields
1-3
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c05
@12t1~m222m2t1t2!1/2#2

~12m2!@~12t!~m222m2t1t2!1/21~m222m2t1t2!#
. ~18!
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The boundary condition att51 is given by the solution
of the SCOZA equation for the spin-1

2 Ising model. Indeed,
this limit is reached whenD̃→2`, and theS50 state is
thus completely suppressed. Equation~16b! then shows that
P(z)/c05 f (m) and settingt51 in Eq. ~18! gives f (m)
512m2. The equation for the remaining variablez(l,m),
Eq. ~16a!, becomes

1

12m2

]

]l
~12z!P~z!5212

1

2

]2

]m2 F ~12m2!
P~z!21

zP~z! G ,
~19!

which is the SCOZA equation for the Ising model studied
Ref. @2# ~with the standard replacement of lattice-gas va
ables by spin variables!. In Ref.@2#, the unknown functionc0

was determined by using the hard-spin conditionSi
251,

which implies thatG(rÄ0)5P(z)/c0512m2 ~in lattice-gas
language, this is the so-calledcorecondition!. Since the self-
consistency conditions, Eqs.~15!, are exact, it is not surpris
ing that the same result comes out from our equations w
the stateS50 is suppressed.

The second boundary att50 is reached whenD̃→1`.
The S561 states are then suppressed. This only happ
however, if the magnetic fieldh is finite. Forh→6`, one
can still have a nonzero magnetization. As a consequenz
remains a nontrivial function of temperature and magnet
tion. The solution of Eqs.~16b! is againP(z)/c05 f (m), and
settingt50 in Eq. ~18! gives f (m)5m(12m) for m>0.
This leads to the equation

1

m~12m!

]

]l
~12z!P~z!5212

1

2

]2

]m2

3Fm~12m!
P~z!21

zP~z! G , ~20!

which identifies to Eq.~19! by replacingm by (12m)/2 and
l by 4l. Therefore, remarkably, the spinodal forh→6`
can be deduced from the spinodal of the spin-1

2 Ising model.
The two maxima atmc56 1

2 andTc5 1
4 Tc

Ising correspond to
second-order transitions that mark the end of the wing c
cal lines forhc→6`, as illustrated below.

Finally, the boundarym51 is reached when all spins ar
in the S51 state. Since there are no more fluctuations,
has j50 and thusz50, whereasG(r50)5^Si

2&2^Si&
2

5P(z)/c050 implies thatc0→`.
The numerical integration of the PDE’s was performed

using a finite-difference scheme in which the three variab
l, t, and m are discretized and the partial derivatives a
approximated by finite-difference representations@17#. The
first derivatives with respect tol are used to updatez andc0
at the temperature stepn11 by evaluating the first and sec
04111
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ond derivatives with respect tot and m at the stepn. In
principle, this is a straightforward procedure. There a
however, two difficulties. First, the region of integration
bounded by the spinodal surface, which is not known in
vance. Second, there is a singular behavior as one
proaches the spinodal. To see this, let us rewrite the PD
using as unknown functionsz and the new variablev
5P(z)/c0. We get

A~z,v !
]v
]l

1B~z,v !
]z

]l
5212

1

2

]2

]m2
@c~z!v#, ~21a!

]v
]l

5
1

2
t~12t!

]

]t
@c~z!v#, ~21b!

where A(z,v)52P(z)(12z)/v2, B(z,v)5(1/v)]@(1
2z)P(z)#/]z andc(z)5@P(z)21#/@zP(z)#. Eq. ~21a! can
be viewed as a nonlinear diffusion equation andA21 plays
the role of a diffusion coefficient that diverges like (
2z)21 whenz→1, namely, on the spinodal surface. The
two difficulties are already present in the equation for t
Ising model, Eq.~19!, but then the spinodal is just a line i
the (l,m) plane@2#.

We solved the first problem as follows. Whenever t
variablezn(t,m) at the temperature stepn enters the interval
(12e,1), where e is small number~typically, e<1025

21026), we consider that the spinodal is reached and
stop the calculation. The spinodal is then defined by the c
responding values oft andm. At the next temperature step
we use the same valueszn and vn to compute the partia
derivatives with respect tot andm on the spinodal~in other
words, we locally ‘‘freeze’’ the values ofz andv inside the
spinodal!. On the other hand, the vanishingly small values
A(z,v) for z→1 impose a dramatic decrease of the inve
temperature spacingDl as the spinodal is approached. I
deed, as is well known@17#, solving a diffusion equation by
anexplicit method requires keeping the ‘‘time’’ step below
certain value that is proportional toD21, where D is the
diffusion coefficient. In Ref.@2#, this problem was avoided
by using animplicit method, which is unconditionally stable
Unfortunately, it is not easy to generalize this procedure t
system of nonlinear PDE’s like Eqs.~21! and we had to keep
a simple explicit algorithm. In the high-temperature regio
we typically adopted the spacingsDm5Dt51022 and Dl
51024. In the vicinity of thel line and in the tricritical
region, Dt was set at 2.1023 and Dl was gradually de-
creased down to 1027. This allowed to determine the critica
parameters with excellent accuracy. For instance, in the l
t→1, we foundJ̃c50.221 25 for the inverse critical tem
perature of the Ising model on the simple cubic lattice. T
corresponds toJ̃c

LG54J̃c50.88500 for the n.n. lattice gas, i
perfect agreement with the value obtained in Ref.@2# ~this is
1-4
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also within 0.2% of the best-estimate result@18#!. When
higher accuracy was required, for instance to determine
asymptotic critical exponents,Dl was further decreased t
1029. The integration was usually carried down tokBT/Jc
'0.18~below this value, the spinodal lines in the vicinity o
t51 are so close to the boundarym51 that we could not
integrate the equations with sufficient accuracy while ke
ing a reasonable spacingDm; indeed, decreasingDm forces
also decreasingDl in order to avoid numerical instabilitie
@17#!.

Before presenting the numerical results, it is instructive
consider the high-temperature series expansion of the s
tion and compare it to the exact results. Sincez→0 for l
→0, one can replace the Green’s functionP(z) by its ex-
pansion in powers ofz. We then expandz andc0 as double
series in l and m2, z(l,t,m)5(pqzpq(t)lpm2q and
c0(l,t,m)5(pqcpq

0 (t)lpm2q. The coefficientszpq(t) and
cpq

0 (t) are polynomials oft that satisfy a system of linea
algebraic equations at each order inl andm2. In the case of
the fcc lattice (c512, P(z)511z2/121z3/3615z4/192
15z5/2881 . . . ) for which extensive series expansio
have been derived by Saulet al. @11#, the results for the
zero-field ordering susceptibility x05( rG(r ;m50)
5]m/]huh50 and the second moment of the correlati
function m25( rr

2G(r ;m50)5cj2x0 are

kBTx05t112t2J̃16~t2121t3!J̃212~t2178t3

1621t4!J̃31
1

2
~t21234t315115t4123778t5!J̃4

1
1

10
~t21612t3131851t41342 690t5

11 122 462t6!J̃51••• ~22!

and

m2512t2J̃1288t3J̃212~t2166t312385t4!J̃3

1
1

2
~240t3110080t41133 488t5!J̃41

1

10

3~t21492t3150931t411 156 410t518 474 742t6!

3 J̃51•••. ~23!

Comparison with the exact series expansions shows tha
coefficients in both expressions are exact through or
(bJ)4 while higher-order terms do not deviate significan
from the exact ones. This is similar to the case of the spi1

2

Ising model and we take this result as a strong indication
the numerical predictions of the SCOZA should be ve
close to the exact solution of the model.

To close this section, let us note that the present the
does not provide acompletedescription of the system. In
particular, it does not give any information concerning t

two correlation functionsGi j
S2S2

5^Si
2Sj

2&2^Si
2&^Sj

2&, and

Gi j
SS2

5^SiSj
2&2^Si&^Sj

2&. In order to determine these func
04111
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tions, one needs to introduce a set of three different dir
correlation functions. This implies to perform a double Le
endre transform that defines a new Gibbs free energy, wh
is a function ofm andx, the concentration order paramete
instead ofm and D. The main interest of this alternativ
theory is that it allows to study the general spin-1 Ham
tonian withKÞ0 andLÞ0. On the other hand, the numer
cal solution is more difficult as one has to solve thr
coupled PDE’s instead of two. Details on the derivation
these equations are given in Appendix A.

III. RESULTS

In this section we concentrate on the SCOZA numeri
predictions for the phase boundaries. These are nonunive
properties that are lattice dependent. If not stated otherw
the results presented here correspond to the simple c
lattice for which no systematic study has been performed
the literature.

The overall shape of the spinodal surface in the (T,t,m)
space and the vicinity of the TCP are depicted in Figs. 1 a
2, respectively. We clearly see the evolution from the sin
curve att51 ~the spinodal of the spin-1

2 model!, which has
a maximum atm50 to the two symmetrical curves att
50 with maxima located atmc56 1

2 , marking the end of the
wing critical lines.

The Tc(t), Tc(D), and Tc(x) phase diagrams in zer
field are shown in Figs. 3–5. Second- and first-order ph

FIG. 1. SCOZA spinodal surface of the 3D Blume-Capel in t
(T2t2m) space.

FIG. 2. Detail of the spinodal surface near the TCP.
1-5
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boundaries are shown as full and dashed lines, respecti
The curves are quite similar to those obtained by series
pansions@11# and Monte Carlo simulations@13# for the fcc
lattice. In particular, we see that the slope of the ph
boundary across the TCP is finite and continuous in b
Tc(t) and Tc(D) @specifically, we find (Tt /Jc)]D/]TuTt

5

20.045]; theTc(D) phase boundary is slightly concave u

FIG. 3. Zero-fieldTc(t) phase diagram. Second-order and fir
order parts of the phase boundary are shown as full and da
lines, respectively. For numerical reasons, calculations have
been performed belowkBT/(Jc)'0.18 ~see text!.

FIG. 4. Zero-fieldTc(D) phase diagram. Second-order and fir
order parts of the phase boundary are shown as full and da
lines, respectively. The inset describes the vicinity of the TCP.
04111
ly.
x-

e
h

ward just below the TCP, and thel line appears to extrapo
late into the interior of the two-phase region in theTc(x)
phase diagram~a continuous slope, however, cannot
strictly ruled out by our calculations!. As is well known, the
slope of thel line and the slope of the coexistence curve
the 3He-rich side are not the same experimentally. This
also predicted by renormalization-group analysis@9#, in con-
trast with mean-field theory@8#.

The accuracy of our calculation for thel line in theD-T
plane can be checked for the special valueD̃5 ln2 for which
a careful Monte Carlo calculation and finite-size study h
been performed by Blo¨te et al. @18#. Our prediction for the
inverse critical temperatureJ̃c5J/(kBTc)50.3924 is in ex-
cellent agreement their estimateJ̃c50.3934224(10). The ac
curacy of the theory is thus the same as for the spin-1

2 Ising
model @2#.

As noted earlier, the TCP corresponds to the point wh
the convexity of the spinodal in theT-t plane changes a
m50. This is illustrated in Fig. 6, which shows the temper
ture dependence of the order parameter and the spin
lines in the tricritical region on the first-order side of th
phase boundary@observe thatDm(t), the discontinuity in
the order parameter across the first-order phase bound
moves away from the spinodal ast decreases#. The coordi-
nates of the tricritical point arekBTt /J51.416060.0040,
t t50.211460.0010 (D t /J52.8457), xt50.65560.006,
where the uncertainties reflect the finite size of the grid sp
ings. The predictions forTt and D t are in excellent agree
ment with the recent Monte Carlo estimates of Deserno@13#;
kBTt /J51.418260.0055, D t /J52.844860.0003 ~these
numbers, however, are different from those quoted in R
@19#, which locate the TCP nearkBTt /J51.3900, D t /J
52.849, andxt50.61; if these~unpublished! results are cor-

ed
ot

ed

FIG. 5. Zero-fieldTc(x) phase diagram. Second-order and fir
order parts of the phase boundary are shown as full and da
lines, respectively. The inset describes the vicinity of the TCP.
1-6
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rect, our value ofxt is overestimated and too close to th
mean-field prediction,xt

MF52/3). Similarly, for the fcc lat-
tice, we findkBTt /J53.111660.0090,t t50.245460.0010
(D t /J55.6520), and xt50.65860.006, which we may
compare with the Monte Carlo estimates of Jain and Lan
@13# kBTt /J53.07260.024, D t /J55.65260.048, andxt
50.5660.02 ~note that our value ofxt is in much better
agreement with the series expansion estimate of Saulet al.
@11#, xt50.66520.015

10.005; obviously, further work is needed t
locate precisely the TCP in thex2T plane!. Finally, our
predictions for the bcc lattice arekBTt /J52.026460.0060,
t t50.235460.0010 (D t /J53.7918), andxt50.65660.006
~to our knowledge, this lattice has only been studied by re
space renormalization-group methods@12# that do not predict
accurately the location of the tricritical point!.

At the TCP, thel-line bifurcates into two symmetrica
wing critical lines. The projections of the wing boundari
onto theD2T, D2h, andT2h planes are shown in Fig. 7
Mean-field theory@8# predicts that the critical fieldhc should
go to infinity at kBTc /Jc5 1

4 . We clearly see in Fig. 7 tha
this value is overestimated. In fact, as noted earlier,
present theory predicts thathc→6` at kBTc /Jc
5 1

4 kBTc
Ising/Jc50.188. For the fcc lattice, this yield

kBTc /Jc50.204, which is consistent with the value that c
be extracted from the Monte Carlo simulations of Jain a
Landau@13#.

IV. ASYMPTOTIC BEHAVIOR IN THE CRITICAL AND
TRICRITICAL REGIONS

As mentioned in the Introduction, the SCOZA for the 3
spin-12 Ising model has a nontrivial scaling behavior in t
critical region @2,3#. Above Tc , the asymptotic behavior is
the same as in the mean-spherical approximation and
exponents are those of the spherical model. This sphe
scaling, however, is detectable only in a very narrow nei
borhood of the critical point, and the effective SCOZA e
ponents are close to the true Ising ones down to redu
temperatures of around 1022. Below Tc , the scaling is nei-
ther spherical nor classical with two scaling functions inste
of one@3#. Despite this shortcoming, the zero-field magne

FIG. 6. Temperature dependence of the order parameter~full
lines! and spinodal lines~dotted! in the vicinity of the TCP on the
first-order part of the phase boundary.
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zation is very well described, with an asymptotic expone
b57/2050.35, which is close to the exact valueb'0.33. It
is thus interesting to also investigate the critical behavior
our SCOZA equations in the critical and tricritical regions
the 3D BC model.

We first consider the behavior of the zero-field orderi
susceptibilityx0 asT→Tc(t) along paths of constantt for
t>t t . Accurate evaluations were relatively straightforwa
to perform in the disordered phase: we only had to gradu
decrease the spacingDl as discussed earlier. Figure 8 show
a log-log plot ofkBTx0 as a function of the reduced tem
peraturet512Tc /T together with the corresponding effec
tive exponent ge f f defined as the local slop
] log(kBTx0)/]logt. In the region 1.0>t.0.25, it can be seen
that eachge f f(t) reaches the value 2 fort;1025 as in the
case of the spin-1

2 model, showing that the asymptoti
spherical behavior is universal. This is no more true wh
one moves further away fromTc . However, in the ranget
>1022, a quasiuniversal behavior is still observed for 1
>t.0.6, and the critical behavior is governed by an effe
tive exponent that is close to the exact Ising valueg
'1.24. On the other hand, ast approaches its tricritica
valuet t50.211, there is an abrupt crossover to another
havior, which is governed by the exponentge f f'1 over a
wide range of temperatures. There is good numerical e
dence thatge f f reaches 1 asymptotically att5t t .

For subcritical temperatures, it was more difficult to o
tain accurate results in the vicinity ofTc because of our use
of an explicit method to integrate the PDE’s. According
we were only able to explore the critical behavior in a r
stricted range of temperaturest512T/Tc . Log-log plots of
the temperature dependence of the order parameterm are
shown in Figs. 9 and 10. Despite the limited range, it appe
from Fig. 9 that in the second-order region well above t

FIG. 7. Projections of the wing boundaries onto theD2T, D
2h, andT2h planes.
1-7
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crossover to tricritical behavior, the slope of each curve ha
common asymptotic limit that corresponds to the SCO
prediction for the Ising model,bscoza

Ising 57/20. Figure 10
shows that for smaller values oft, one needs to go closer t
Tc to reach this asymptotic universal regime. Again, we o
serve an abrupt crossover to another behavior as one e
the tricritical region. Our results are consistent with t

FIG. 8. Log-log plot of the zero-field ordering susceptibili
kBTx0 as a function of the reduced temperature 12Tc /T and cor-
responding effective exponentge f f . The different curves corre
spond tot51.00, 0.79, 0.60, 0.40, 0.29, 0.25, and 0.22.

FIG. 9. Log-log plot of the order parameterm as a function of
the reduced temperature 12T/Tc in the second-order region we
above the crossover to tricritical behavior.
04111
a

-
ers

asymptotic exponentb t51/4 for t5t t .
Finally, we analyze the shape of the wing critical boun

ary as it approaches the TCP. Figure 11 shows the log
plots of the critical fieldhc and the magnetizationmc as a
function of the reduced temperature 12Tc /Tt . Our numeri-
cal data are consistent with asymptotic power-law behav
governed by the exponents 5/2 forhc and 1/2 formc .

All the above numerical results strongly suggest that
theory describes the whole critical portion of the pha

FIG. 10. Log-log plot of the order parameterm as a function of
the reduced temperature 12T/Tc in the second-order and tricritica
regions.

FIG. 11. Behavior of the wing boundaries as the TCP is
proached; log-log plots of the critical fieldhc and magnetizationmc

as a function of the reduced temperature 12Tc /Tt .
1-8
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boundary by the same exponents as the SCOZA equatio
the spin-12 Ising model@2,3# and that near the TCP there is
crossover to a tricritical behavior described by mean-fi
exponents. This is supported, and can be further rationali
by considering a heuristic scaling analysis of the coup
SCOZA PDE’s, Eqs.~16!. The argument is summarized b
low and detailed in Appendix B.

Let us assume that close to the TCP, the singular par
the Gibbs free energy can be written as

G sing'utu22aG6S g

utuf
,

m

utub
D ~24a!

'ugu22a tG 6
t S t

uguf t
,

m

ugub t
D , ~24b!

where we have introduced the two scaling fieldst5(T
2Tt)/Tt and g5(t2t t)/t t2at where (t t /Tt)a
5]tl /]TuTt

.0 is the slope of thel line at the TCP~this is
also the slope of the triple line belowTt , as we have seen
that the slope of the phase boundary is finite and continu
at the TCP!. Equations~24! have the form of the standar
tricritical scaling hypothesis@9,10#, except that we use th
magnetizationm instead of the magnetic fieldh as variable.
G(6) andG (6)

t are the scaling functions, where the subscr
(6) represents the sign oft, i.e., denotes when the temper
ture is above or below the tricritical temperatureTt . When
utu→0 with g50, the TCP is approached tangentially to t
phase boundary in the symmetry planeh50 @and Eq.~24a!
is then the convenient form of the scaling hypothes#,
whereas the TCP is approached with a finite angle with
phase boundary whengÞ0 @and Eq.~24b! is the convenient
scaling form#. This defines two sets of exponents (a,f,b)
and (a t ,f t ,b t) that are related through 22a t5(22a)/f,
f t51/f andb t5b/f.

Since SCOZA is thermodynamically self-consistent, t
scaling behavior of the Gibbs free energy near the TCP
inherited by its various derivatives. In particular, th
asymptotic behavior of the magnetic fieldh5](G/N)/]m is

h'utu22a2b
]

]v
G6~u,v !'ugu22a t2b t

]

]v t
G 6

t ~ut ,v t!,

~25!

whereu5g/utuf, v5m/utub (ut5t/uguf t, v t5m/ugub t), and
the inverse ordering susceptibilityx0

215]2(G/N)/]m2 and
the singular part of the4He concentration order paramet
r512x5](G/N)/]D obey ~up to irrelevant multiplying
factors!

x0
21'utug

]2

]v2
G6~u,v !'ugug t

]2

]v t
2
G 6

t ~ut ,v t! ~26!

and

rsing'2utu22a2f
]

]u
G6~u,v !

'2ugu22a t2f t
]

]ut
G 6

t ~ut ,v t!, ~27!
04111
for
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whereg522a22b ~respectively,g t522a t22b t). Note
also that becausem is used in Eqs.~24! instead ofh, the
zero-field magnetization is solution of the implicit equatio
h5](G/N)/]m50. This implies that the singular part of thi
quantity near the TCP obeysmsing'utubM6(g/utuf)
'ugub tM 6

t (g/utuf t).
From the numerical results shown in Figs.~8!–~11!, it

appears thatg t'1 ~see the curvet50.22 in the lower part of
Fig. 8!, b t'1/4 ~see the curvet50.21 in Fig. 10!, 22a
2b'5/2, andb'1/2 ~upper and lower parts of Fig. 11!.
@We have also good numerical evidence thatb'1/2 from a
log-log plot of the discontinuity of the zero-field magnetiz
tion as a function of (Tt2T)/Tt across the first-order phas
boundary.# All these exponents have their classical valu
and from the scaling relationa12b1g52 ~respectively,
a t12b t1g t52), we deduce thatg52 and a t5

1
2 . These

values are all consistent with a crossover exponentf52.
We show in Appendix B that the scaling ansatz, Eqs.~24!

or Eqs.~26!–~27!, is compatible with the asymptotic behav
ior of the PDE’s, Eqs.~16!, in the tricritical region. This
analysis indicates that a nontrivial scaling is found when
exponents obey the two relationsg5f and g54b, which
are satisfied by the classical values. Moreover, one finds
the scaling function of the zero-field susceptibility aboveTt
obeys an equation that is similar to the asymptotic SCO
equation studied in Ref.@3# for the spin-12 model. It can be
inferred that the critical behavior of the present theory alo
thel line is the same as the SCOZA prediction for the Isi
model. This is consistent with the exponentḃ57/20, which
is observed numerically in Fig. 9 along the high-temperat
part of thel line. This universality appears to hold along th
wing critical lines too since the boundary condition to Eq
~16! at the end of these lines~for hc→6`) is again the
SCOZA PDE for the Ising model, as explained in Sec. II

V. CONCLUSION

The present paper shows that a thermodynamically s
consistent OZ approximation provides a very good desc
tion of the properties of the 3D Blume-Capel model in
parts of the phase diagram. As in the case of the Ising mo
nonuniversal properties such as the shape of the ph
boundaries and the location of the tricritical point are p
dicted with remarkable accuracy. Moreover, there is go
numerical and analytical evidence that the SCOZA correc
predicts a universal critical behavior along thel line and the
wing critical lines~with a zero-field magnetization expone
0.35 that is very close to the true Ising value!, as well as a
crossover to tricritical behavior governed by classical ex
nents. Therefore, the SCOZA proves to be a powerful t
for studying spin systems that exhibit first-order and/or co
tinuous transitions. This is confirmed by further work on t
ferromagnetic spin-3/2@20# and Potts@21# models.

APPENDIX A

In this Appendix, we derive the SCOZA equations for t
most general spin-1 Hamiltonian with n.n. couplings,
1-9
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H5HBC2K(̂
i j &

Si
2Sj

22L(̂
i j &

SiSj~Si1Sj !, ~A1!

which is a model for ternary mixtures@16#. The solution of
these equations also provides a complete description of
pair correlation functions of the Blume-Capel model. The
functions can be generated by introducing site-depend
fields hi andD i in the Hamiltonian~A1!, which yields

Gi j
SS5^SiSj&2^Si&^Sj&52

]2F̃
]h̃i]h̃ j

, ~A2a!

Gi j
SS2

5^SiSj
2&2^Si&^Sj

2&5
]2F̃

]h̃i]D̃ j

, ~A2b!

Gi j
S2S2

5^Si
2Sj

2&2^Si
2&^Sj

2&52
]2F̃

]D̃ i]D̃ j

. ~A2c!

We then perform a double Legendre transform that takes
fields hi and D i into mi and xi , respectively, wherexi51
2^Si

2&512]F/]D i . This defines a Gibbs free energ
G(T,$mi%,$xi%)5F1( ihimi2( iD i(12xi), which satisfies
hi5]G/]mi andD i5]G/]xi . G is the generating functiona
of the direct correlation functions,

Ci j
SS5

]2G̃
]mi]mj

, ~A3a!

Ci j
SS2

52
]2G̃

]mi]xj
, ~A3b!

Ci j
S2S2

5
]2G̃

]xi]xj
, ~A3c!

that are related to theG’s via a set of Ornstein-Zernike equa
tions. In the limit of uniform fields, these equations in Fo
rier space take the formĈ= (k)Ĝ= (k)51, where Ĝ= (k) and
Ĉ= (k) are symmetrical square matrices. This readily yield

ĜSS~k!5
ĈS2S2

~k!

ĈS2S2
~k!ĈSS~k!2ĈSS2

~k!2
, ~A4a!

ĜS2S2
~k!5

ĈSS~k!

ĈS2S2
~k!ĈSS~k!2ĈSS2

~k!2
, ~A4b!
04111
he
e
nt

e

ĜSS2
~k!5

2ĈSS2
~k!

ĈS2S2
~k!ĈSS~k!2ĈSS2

~k!2
. ~A4c!

We now assume that the range of the direct correlat
functions is limited to n.n. separation, i.e.,

ĈSS~k!5c0
SS@12zSSl̂~k!#, ~A5a!

ĈSS2
~k!5c0

SS2
@12zSS2l̂~k!#, ~A5b!

ĈS2S2
~k!5c0

S2S2
@12zS2S2l̂~k!#, ~A5c!

where thec0’s and thez ’s are functions ofT,m, andx to be
determined. This fixes the form of the correlation functio
in r space, and after some calculations we find

GSS~r !5GSS~r50!

3
~z12zS2S2!P~z1 ,r !2~z22zS2S2!P~z2 ,r !

~z12zS2S2!P~z1!2~z22zS2S2!P~z2!
,

~A6a!

GSS2
~r !5GSS2

~r50!

3
~z12zSS2!P~z1 ,r !2~z22zSS2!P~z2 ,r !

~z12zSS2!P~z1!2~z22zSS2!P~z2!
,

~A6b!

GS2S2
~r !5GS2S2

~r50!

3
~z12zSS!P~z1 ,r !2~z22zSS!P~z2 ,r !

~z12zSS!P~z1!2~z22zSS!P~z2!
,

~A6c!

whereP(z,r ) is the lattice Green’s function defined by E
~10!, and z1 ,z2 are related to thec0’s and thez ’s via the
relations

zSS1zS2S252R2zSS21~12R2!~z11z2!, ~A7a!

zSSzS2S25R2zSS2
2

1~12R2!z1z2, ~A7b!

and
R

R0
5

$z1P~z1!2z2P~z2!2zSS@P~z1!2P~z2!#%1/2$z1P~z1!2z2P~z2!2zS2S2@P~z1!2P~z2!#%1/2

z1P~z1!2z2P~z2!2zSS2@P~z1!2P~z2!#
, ~A8!
1-10
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whereR5c0
SS2

/(c0
SSc0

S2S2
)1/2 andR0 is the high-temperature

limit of R, which can be calculated exactly, as explain
below. Note that in Eqs.~A6! we have eliminated thec0’s to
introduce the on-site values of the correlation functions t
are simple functions of the order parametersm andx. Indeed,
sinceSi can only take the values 0,61, one haŝ Si

3&5^Si&
and ^Si

4&5^Si
2&, so that
ns

04111
t

GSS~r50!512x2m2, ~A9a!

GSS2
~rÄ0!5mx, ~A9b!

GS2S2
~r50!5x~12x!. ~A9c!

In terms of these variables, one also has
c self-
ĈSS~k50!5
12zSS

~12R2!~12x2m2!

z1P~z1!2z2P~z2!2zS2S2@P~z1!2P~z2!#

z12z2
, ~A10a!

ĈSS2
~k50!52

~12zSS2!R2

~12R2!xm

z1P~z1!2z2P~z2!2zSS2@P~z1!2P~z2!#

z12z2
, ~A10b!

ĈS2S2
~k50!5

12zS2S2

~12R2!x~12x!

z1P~z1!2z2P~z2!2zSS@P~z1!2P~z2!#

z12z2
. ~A10c!

Three unknown functions remain to be determined, and it is convenient to choosez1 ,z2, andR and to use Eqs.~A7! and
~A8! to calculate thez ’s. The three additional equations that we need are obtained by imposing thermodynami
consistency. On the one hand, the enthalpy is given by

]G̃/N

]b
52

Jc

2
@GSS~r5e!1m2#2

Kc

2
@GS2S2

~r5e!1~12x!2#2Lc@GSS2
~r5e!1m~12x!#. ~A11!

On the other hand, we have from Eqs.~A3!

ĈSS~k50!5
]2G̃
]m2

, ~A12a!

ĈSS2
~k50!52

]2G̃
]m]x

, ~A12b!

ĈS2S2
~k50!5

]2G̃
]x2

. ~A12c!

This yields the three Maxwell equations

]ĈSS~k50!

]l
5212

1

2

]2@GSS~r5e!1a1GS2S2
~r5e!12a2GSS2

~r5e!#

]m2
, ~A13a!

]ĈSS2
~k50!

]l
52a21

1

2

]2@GSS~r5e!1a1GS2S2
~r5e!12a2GSS2

~r5e!#

]m]x
, ~A13b!

]ĈS2S2
~k50!

]l
52a12

1

2

]2@GSS~r5e!1a1GS2S2
~r5e!12a2GSS2

~r5e!#

]x2
, ~A13c!
an

at
wherel5bJc, a15K/J, anda25L/J.
These equations, together with Eqs.~A7! and ~A8!, con-

stitute a set of three PDE’s in the unknown functio
z1(l,m,x), z2(l,m,x), andR(l,m,x), whose solution en-
codes the full thermodynamics of the model Hamiltoni
~A1!. The initial conditions forJ5K5L50 are easily ob-
tained since the correlation functions are then nonzeror
50 only. One hasz15z250 and from Eqs.~A4! and ~A9!
1-11
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R052
mx

@x~12x!~12x2m2!#1/2
. ~A14!

It should be noticed that in the case of the Blume-Ca
model~for which a15a250), this SCOZA is different from
the one presented in the main text. This can checked
instance by computing the high-temperature expansion of
solution. Both theories yield zero-field properties that a
exact through orderl4. It is unclear which one provides th
best numerical predictions.

APPENDIX B

In this appendix, we show that the tricritical scaling h
pothesis, Eqs.~24! or ~26!–~27!, is consistent with the
asymptotic behavior of the SCOZA PDE’s, Eqs.~16!. The
notations are those of the main text.

To this end, it is convenient to rewrite the PDE’s in term
of the two variablesE5(12z)1/2 and r512x. E 2 is pro-
portional to the inverse susceptibilityx0

21 and r5G(r50)
1m25P(z)/c01m2. At the TCP, we haveE50 and r
5r t . For t→0, m→0, and r→r t , Eqs. ~16! take the
asymptotic form

P~1!2

r tl t

]E 2

]t
512S P~1!21

2 D F br t

P~1!21

]2E
]m2

2
]2r

]m2G ,

~B1a!

]r

]t
5

1

2
l t~12t t!

P~1!21

P~1! F br t

P~1!21

]E
]dt

2
]r

]dtG ,
~B1b!

where t5(T2Tt)/Tt , l t5cJ/(kBTt), dt5(t2t t)/t t , and
we have used the expansion of the 3D lattice Green func
for z→1, P(z);P(1)@12bE1O(E 2)#, whereb is a posi-
tive constant@22#. In these equations and in the following, a
derivatives are taken at the TCP.

By suitably rescaling the variables asE→br t /@P(1)
21#E, t→l tb

2r t
3/@P(1)(P(1)21)#2t, m→m/@P(1)

21#1/2, and dt→b2r t
3/$P(1)@P(1)21#3(12t t)%dt, we

obtain the two simplified equations

]E 2

]t
512

1

2

]2~E2r!

]m2
, ~B2a!

]r

]t
5

1

2

]~E2r!

]dt
. ~B2b!

We now introduce the tricritical scaling ansatz forE and
for the singular part ofr, according to Eqs.~26! and ~27!,

E'utug/2E6~u,v !, ~B3!

rsing'utu22a2fR6~u,v !, ~B4!

whereu5g/utuf andv5m/utub. Because of thermodynami
self-consistency,E6 andR6 obey
04111
l

or
e

e

n

]E6
2

]u
52

]2R6

]v2
. ~B5!

For the sake of simplicity, we only consider the caset
.0 ~i.e.,T.Tt), but a similar analysis can be performed f
t,0. Then Eqs.~B2! yield

tg21FgE1
2 2fu

]E1
2

]u
2bv

]E1
2

]v G1a~f21!tg2f
]E1

2

]u

512
1

2 F tg/222b
]2E1

]v2
2tg2f

]2R1

]v2 G , ~B6a!

t12aF ~22a2f!R12fu
]R1

]u
2bv

]R1

]v G
1a~f21!t22a2f

]R1

]u
5

1

2 F tg/2
]E1

]u
2t22a2f

]R1

]u G ,
~B6b!

where we have used the scaling relationg522a22b,
which results from thermodynamic self-consistency. If t
crossover exponentf is greater than 1~which is usually the
case and is indeed found numerically!, the first term in the
left-hand side of Eq.~B6a! may be neglected asymptotically
A nontrivial scaling is then found when the exponents a
related through the two relationsg5f54b. For the same
reason we may neglect the first term in the left-hand side
Eq. ~B6b! and we obtain the relationg52(22a2f)
~which is not independent from the preceding ones!. Actu-
ally, we expect that as in the SCOZA for the Ising model, t
enthalpy is analytic inm2 and T2Tc when approaching a
critical point from a disordered phase, which corresponds
g52 andb51/2. ~At the tricritical point, them2 term of
course vanishes.! The scaling functions satisfy the two non
trivial PDE’s

a~f21!
]E1

2

]u
512

1

2

]2~E12R1!

]v2
, ~B7a!

]E1

]u
5@112a~f21!#

]R1

]u
. ~B7b!

Using Eq.~B5! to eliminate one of the functions, we finall
obtain a single equation forE1

]E1
2

]u
512

1

2

]2E1

]v2
, ~B8!

where we have used the rescalingu→2/@2a(f21)11#u.
~Note that the multiplying factor is positive sincea.0 and
f.1.! Of course, this equation must be accompanied
some boundary conditions. These are obtained from the
lytical requirements that the scaling functions must sati
near the TCP and in the vicinity of the critical lines and t
coexistence surfaces~see, e.g., Ref.@10#!. It can be shown
that these boundary conditions are also compatible with
1-12
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SCOZA equations. The other functionR1 can be obtained a
@112a(f21)#R1(u,v)5E1(u,v)2v21R10, whereR10

is a constant that can be determined by the boundary co
tions.

Equation~B8! has an important consequence for the sc
ing behavior near the TCP when one approaches thel line
along a path at fixedt. The convenient temperature variab

is thenṫ5@T2Tl(t)#/Tt , which measures the distance fro

l line at fixed t, so that t5 ṫ1tl , where tl5@Tl(t)

2Tt#/Tt defines thel line near the TCP. Whenu ṫ u→0, or

t→tl(t), the scaling fieldg behaves asg2g0; ṫ , where
g05(t2t t)/t t is a constant, and the scaling variablesu and
l

04111
di-

l-

v behave asu2u0; ṫ andv;m, whereu0 is a constant. As
a consequence, Eq.~B8! can be rewritten as

]E1
2

] ṫ
512

1

2

]2E1

]m2
. ~B9!

This is precisely the asymptotic SCOZA equation for t
spin-12 Ising model that has been studied in Ref.@3# ~with E1

playing the role of the variablef in that reference!. There-
fore, one expects that the critical behavior above and be
the critical temperatureTl(t) will be identical to that of the
SCOZA for the Ising model@with for instanceḃ57/20 for
the zero-field magnetizationm( ṫ )].
et-
-
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