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Thermodynamically self-consistent theory for the Blume-Capel model
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We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-
dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two
coupled partial differential equations. The theory provides a comprehensive and accurate description of the
phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the
coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series
expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like
critical behavior along tha line and the wing critical lines, and a tricritical behavior governed by mean-field

exponents.
DOI: 10.1103/PhysRevE.63.041111 PACS nun)er05.20.Gg, 64.60:i, 05.50+q
I. INTRODUCTION of the spin-1 Blume-Emery-Griffith§ BEG) model [8],

which represents a variety of interesting physical systems, in

The self-consistent Ornstein-Zernike approximationparticular *He-*He mixtures. This model has played an im-
(SCOZA) has been introduced some time ago by Hoye angbortant role in the development of the theory of tricritical
Stell[1] as a method for obtaining thermodynamic and strucphenomend9,10] and has been very actively studied over
tural properties of simple fluid and lattice-gas systems. Likethe years, following the original mean-field treatment of
the mean-spherical approximation, this approach is based @EG [8]. Various methods like series expansiofikl],
the assumption that the direct correlation functiGir), renormalization-group calculationd.2], and Monte Carlo
which is related to the two-particle distribution function simulations[13] have been used to describe the first- and
G(r) via the Ornstein-ZernikéOZ) equation, is proportional second-order regions, the tricritical region, and the crossover
to the pair potential outside the hard-core region for a  between them. A study of the coexistence curve using the
lattice gas, forr 0). But the dependence of the proportion- mean-spherical approximation has also been proposed re-
ality constant on density and temperature is determined igently[14]. There is no analytical theory, however, which is
such a way that the same free energy is obtained from flucble to provide a comprehensive and accurate description of
tuation theory—the so-called compressibility or susceptibil-the phase diagram in all regiorféncluding the “wing”
ity route—and from integration of the internal energy with boundaries in a nonzero magnetic fields we shall see in
respect to the inverse temperature. For the lattice gas witthe following, the SCOZA reaches this goal quite success-
nearest-neighbor attractive interactiafs equivalently, for  fully without requiring prohibitive computational effort. In
the ferromagnetic spig-Ising mode), this thermodynamic particular, the coordinates of the tricritical poifCP) for
self-consistency is embodied in a partial differential equatiorthe various cubic lattices are predicted with very good accu-
whose solution, along with the requirement of single siteracy and the universal asymptotic tricritical behavior is well
occupancy, fixe€(r) [and thusG(r)] uniquely. Because of described. This suggests that the SCOZA is a reliable theory
numerical difficulties, this equation was only solved recentlyfor exploring three-dimensional systems that exhibit first or-
[2], showing that the SCOZA provides an accurate descripder as well as continuous transitions.
tion of the properties of the three-dimensiof@D) Ising The paper is organized as follows: in Sec. Il we describe
model over most of the phase diagram. The predicted valug§e theory and derive the partial differential equations that
of T, for the various cubic lattices are within 0.2% of their encode the thermodynamics of the model, in Sec. Il we
best estimates, the effective critical exponents are faithful t@resent our results for the phase diagram, and in Sec. IV we
the true behavior abov&, except in a very narrow neigh- discuss the universal properties in the second-order and tric-
borhood of the critical point, and the zero-field magnetiza-itical regions. Our conclusions are drawn in Sec. V. The
tion is described asymptotically by the nonclassical exponergxtension of the theory to the full spin-1 Hamiltonian is pre-
B=0.35[3]. The SCOZA has been also extendedhtoom-  sented in Appendix A and details on the scaling behavior
ponent and continuous spifid], and accurate results have near the TCP are reported in Appendix B.
been obtained for the hard-core Yukawa fljis] and for
several spin systems in the presence of quenched disorder
6], Il. THEORY

The purpose of this paper is to apply the same type of The Blume-Capel(BC) model [7] is defined by the
approximation to the Blume-Capel mod&I], a special case Hamiltonian
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where §=0,£1 is the spin variable at each siteof a  tions only depend on the vectotthat connects the two sites.
d-dimensional lattice and the first term sums over all nearestfhe OZ equation then simplifies to
neighbor (n.n) pairs. This is a special case of the BEG
Hamiltonian[8], Hgec=Hac— K, S’S, which is a mi- C(k)G(k)=1 (6)
croscopic model for’He-*He mixtures.S;=0 represents a )
3He atom at sité andS,= =1 a *He atom, with the sign in N Fourier space. _ _ o
the latter case describing the superfluid degree of freedom. In In contrast withG(r), the direct correlation function is
this interpretation, the coupling constalt0 is a potential ~€XPected to remain a stjort—ranged function even in the criti-
that promotes superfluidity, the crystal field reflects the cal region[specifically, C(k=0)<+<]. In the following,
chemical-potential difference between the isotopes, kind we shall assume th&i(r) has always the same range as the
represents the difference in the van der Waals interactiongair potential. This OZ ansatz is ttely approximation in
between the isotope@he actual value oK/J is small, so our theory. Since the exchange interaction in the Blume-
that settingk =0 is a sensible approximatipnThe magne- Capel Hamiltonian is limited to nearest-neighlion) sites,
tization m=(S;) identifies to the superfluid order parameter this amounts to setting
andx=1—(S?) represents théHe concentration. As is well - -~
known, the phase diagram dHe-*He mixtures presents a C(r)=co(J,A,m) 6 ot C1(J,A,m) 5 ¢ @)
line of second-order transitiorfthe so-called\ line) at high
temperatures and higtHe concentrations and a coexistence
region associated with a first-order transition at low tempera- IR s B QIR
tures. The BC Hamiltonian may also describe a spilsing Cl)=co(J,4,MIL=2(J,4,MAK)], ®
model with a fractional concentrationof nonmagnetic im- where e is a vector from the origin to one of its nearest
purities in thermal equilibrium with the spin systetan-
nealed dilution. A is then interpreted as the chemical poten-
tial that controls the impurity concentratiofthe case of
guenched dilution has been studied in Réf).

Our theory for the Blume-Capel model is based on a

or in Fourier space,

neighbors,\ (k) = (1/c) = £'*€ is the characteristic function
of the lattice € is the coordination numbgr and z=
—(cq/cp)c. ¢co andcy (or, equivalentlycy andz) are func-

r]tions of J=pBJ,A=BA, andm, which will be obtained be-

Ornstein-Zernike approximation for the direct correlation!®V from the iolutipn ?f the SCOZhA .palrtial differential
function C;;, which is the inverse of the connected pair cor- €44ations (in the simpler mean-spherical approximation

relation functionG;; =(S;S;)—(S)(S), i.e., ;tgdied in Ref[14], one ha§ just1=—:]).. It is worth no-
ticing that the range o€(r) is exactly limited to n.n. sepa-
ration in one dimension. This can be easily checked by using
Ek GikCyj= 6ij , (2)  the transfer-matrix methotsee, e.g., Ref.15]) to calculate
G(r) and then inverting the OZ equation to get the direct
correlation function(this result holds for the most general
spin-1 Hamiltonian with nn pair interaction§{="Hgc
—KZ()S’S'-L;)SS|(S+S), which is used as a
model for ternary mixturefl6]). C(r) has the same spatial
structure in the limit of infinite dimensiofwhere the mean-
G=F+2> him, (3)  field approximation becomes exacand we expect that Eq.
' (8) is a reasonable assumption fd=3. A major conse-
quence is thaG(r) is given in any dimension by

whereg;; is the Kronecker symbol. This OZ equation may be
considered as the definition @f; . It is also a consequence
of the Legendre transform

that defines the Gibbs free energyfrom the free energy
F=—kgTInTrexd—Hgc/(kgT)]. In Eq. (3), a site- 1
dependent magnetic fieldd has been introduced for conve- G(r)=—P(r,z), 9
nience and(S;)=—JdF/dh;=m; is the local magnetization. Co

The second functional derivatives &fandG with respectto  \yhere

the local fields and local magnetizations gener@te and

Cij , respectively, 1 - e ikr
P(r,z)= df dk———— (10
2F (2m)%)-= 1—z\ (k)
Gij =T == (4) . . . . <
ah;ah; is the lattice Green’s functioffor instance\ (k) = 3 (cosk,
+ cosk,+ cosk,) for the simple cubic lattick The variablez
9%C (with 0=<z=<1) is related to the second-moment correlation
Ci = mam,” ) |ength ¢ defined byG(k)~G(0)(1+ ¢%k?), k—0, where
BG(0)=dm/dh=BI[co(1—2)]. Specifically, one hasd?
where F=BF,G= G, andh;=ph; [3=(kgT) 'is the in- =2/(1—2) for the simple hypercubic lattice. Therefore, for a

verse temperatuteFor a uniform magnetic fielth=h, the  given value of the crystal-field, the conditionz=1 gives
system is translationally invariant and the correlation func-the locus of diverging correlation length and diverging sus-
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ceptibility in the 3,m) plane. This defines a spinodal surface
in the 3,A,m) space; in particularz(J,A,m=0)=1 corre-
sponds to thea line in the region of thén=0 phase diagram
where the transition is continuous.

In order to determine the two unknown functionsandz,
we impose thermodynamic self-consistency. To this end, we
consider the change in the free energy associated with infini-

PHYSICAL REVIEW B3 041111

d L1 1 0> P(z)—1 16
oy Co(1-2)=~- T2 26 (163
1% P(z)_l Jd P(z)—1 b
N g 217G T 0 (6D

tesimal changes id,A andh:

57::_5302]) <SS,->+5ZZ <s,2>—5?12i (s). (11

In terms of the pair-correlation function, this gives

- 1 ~ ~
SFIN=— E[G(r=e)+m2]5)\+[G(r=0)+m2]5A—m5h,

whereP(z)=P(r=0,z) and the relatiorP(r=¢e,z)=(P(2)
—1)/z has been used. Given the appropriate boundary con-
ditions, integration of these coupled partial differential equa-
tions (PDE) in the two unknown functiongy(\,7,m) and
z(\,7,m) gives at once the thermodynamics of the Blume-
Capel model in the whole parameter space. Indeed, accord-
ing to Eq.(13), the Gibbs free energg(\,r,m) can be ob-
tained in the same run of integration from the integral of
—1[G(r=e)+m?] with respect tox (thanks to the thermo-

whereN is the number of lattice sites and the coordinationdynamic consistency, this is equivalent to integration with
numberc has been absorbed in the new inverse temperatunespect ta\ or tom). At fixed N andr, G as a function ofn

variable\ =cJ. The corresponding change in the Gibbs freehas the same shape as in mean-field th¢8tyexcept that

energy is

~ 1 o~
SGIN=— E[G(r=e)+m2]5)\+[G(r:0)+m2]5A+h5m.

On the other hand, from E@5), we have

9CIN .
Q2 =C(k=0).

om

the unstable region inside the spinodal is excluded. At the
critical temperature, there is a single minimumnat 0 for

7>7, or three minima at 0 andtAm [with G(+Am)

=G(0)] for 7< 7;. This defines the second- and first-order
parts of theh=0 phase diagram, respectively. The maxima
of the spinodal curves in th€—m plane(corresponding to
#°Glam?=0) define the lines of second-order critical points,
i.e., the\ line for 7> 7, (m=0) and the wing critical lines
for 7<7, [m=*=m(7)]. In the latter case, the correspond-
ing critical field is given by+ hc=&(g/N)/am|m:tmc. The
coordinates T, 7;) of the TCP can be determined accurately
by observing the change in the convexity of the spinodal at

Therefore, in order to get the same Gibbs free energy whem=0.

integrating with respect tv, A, or m, the following Maxwell

relations must be satisfied:

aC(k=0) 1 & (i)t
T__Eﬁ[ (r=e)+m-],

dG(r=0) __E dG(r=e)

From a computational point of view, the coupled PDE’s,
Egs. (16), define an initial value problem. The inverse tem-
perature variable. plays the role of time and the equations
describe hovz(\,7,m) andcy(A\,7,m) propagate forward in
time. We thus need to specify the initial conditionhat 0
and the boundary conditions at=1, =0, andm=+*1
(actually, because of symmetry, one can restrict the domain
of integration tom=0).

The initial conditionJ=A=0 corresponds to the high-

IN 2 xR temperature limit where the spins are independent. The prop-
erties of the system can be calculated exactly and the corre-
lation functions are nonzero only at=0. This implies that

aC(k=0) 2 , z=0 and C(0)=dh/dm=c,. The inverse susceptibility is
Ik = W[G(r =0)+m7]. (159 readily obtained from the expression of the magnetization

Clearly, only two of these equations are independent and in
the following we shall use Eq$158 and(15b).

ReplacingA by the new variabler=(1+ e*)~* which
varies from 0 to 1, and inserting the explicit expressions of
C(k) atk=0, andG(r) atr=0 andr=e that are obtained
from Egs. (8)—(10), we finally get the two SCOZA equa-

oo
(17)

m= —-—————,
et eh+en

tions, which yields
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B [1— 7+ (m?=2m?r+ 72) 172
(1-m?)[(1- 7)(m?—2m?7+ ) V24 (m?— 2mP7+ 7%)]

Co (18)

The boundary condition at=1 is given by the solution ond derivatives with respect to and m at the stepn. In
of the SCOZA equation for the spifising model. Indeed, principle, this is a straightforward procedure. There are,
this limit is reached whem\ — —o0, and theS=0 state is however, two difficulties. First, the region of integration is
thus completely suppressed. Equati@6b) then shows that bounded by the spinodal surface, which is not known in ad-
P(z)/co=f(m) and settingr=1 in Eq. (18) gives f(m) vance. Second, there is a singular behavior as one ap-

=1-m?. The equation for the remaining variat#éx,m), proaches the spinodal. To see this, let us rewrite the PDE’s
Eq. (169, becomes using as unknown functiong and the new variabley
=P(2)/cy. We get
1 9 (1-2)P(2)=—1 1 & a 2)P(z)—1
—(1-2)P(z2)=-1- s —|(1-m 2
1—m?2 I\ 2 gm? zP(z) |’ P z_ L
Qg A@vIGFrBEvZ=-1-5-Slu@el, (18
which is the SCOZA equation for the Ising model studied in Jv 1 9
Ref. [2] (with the standard replacement of lattice-gas vari- N 5 7(1- T)a—T[lﬂ(Z)v], (21b

ables by spin variablesin Ref.[2], the unknown functior,

was d_eter_mined by using the hard-spin c_ondit'@%: 1, where A(z,v)=-P(2)(1-2)/v?  B(zv)=(1h)d(1
which implies thaG(r=0) = P(z)/co=1-m? (in lattice-gas  —z)P(2)]/az and ¢(z) =[ P(2) — 1]/[zP(2)]. Eq. (218 can
language, this is the so-calledre condition. Since the self- be viewed as a nonlinear diffusion equation aad* plays

consistency conditions, EgEL5), are exact, it is not surpris- the role of a diffusion coefficient that diverges like (1
ing that the same result comes out from our equations when z)~1 whenz— 1, namely, on the spinodal surface. These

the stateS=0 is suppressed. two difficulties are already present in the equation for the
The second boundary at=0 is reached whed — + . Ising model, Eq(19), but then the spinodal is just a line in

The S=+1 states are then suppressed. This only happengie (\,m) plane[2].

however, if the magnetic fieldl is finite. Forh— =, one We solved the first problem as follows. Whenever the

can still have a nonzero magnetization. As a consequence,variablez,(7,m) at the temperature stepenters the interval
remains a nontrivial function of temperature and magnetiza¢1—e,1), where € is small number(typically, e<10°

tion. The solution of EqY(16b) is againP(z)/c,=f(m), and —10 °), we consider that the spinodal is reached and we
setting 7=0 in Eq. (18) gives f(m)=m(1—m) for m=0.  stop the calculation. The spinodal is then defined by the cor-
This leads to the equation responding values of andm. At the next temperature step,
we use the same valueg and v, to compute the partial
1 d 1 42 derivatives with respect te andm on the spinodalin other
m(1—m) F(1-2P(@)=-1-3 o words, we locally “freeze” the values of andv inside the
spinoda). On the other hand, the vanishingly small values of
P(z)—1 A(z,v) for z—1 impose a dramatic decrease of the inverse
X|m(1-m) ZP(2) |’ (20 temperature spacing\ as the spinodal is approached. In-

deed, as is well knowhl7], solving a diffusion equation by
which identifies to Eq(19) by replacingmby (1—m)/2 and  anexplicit method requires keeping the “time” step below a
N by 4\. Therefore, remarkably, the spinodal for = certain value that is proportional tb !, whereD is the
can be deduced from the spinodal of the spitsing model.  diffusion coefficient. In Ref[2], this problem was avoided
The two maxima am,=+ % andT,=:T'5'"% correspond to by using animplicit method, which is unconditionally stable.

second-order transitions that mark the end of the wing critiJnfortunately, it is not easy to generalize this procedure to a

cal lines forh.— o, as illustrated below. system of nonlinear PDE’s like Eq&1) and we had to keep
Finally, the boundaryn=1 is reached when all spins are & simp]e explicit algorithm. In .the high—tempgrgtture region,

in the S=1 state. Since there are no more fluctuations, on&'® tyglcally adopted the spacingem=A7=10"° and A\

has é=0 and thusz=0, whereasG(r=0)=<SZ)—<Si)2 =10"". In the vicinity of the\ line and in the tricritical

= P(2)/co=0 implies thatcy—s o=, ' region, A7 was set at 2.10° and AN was gradually de-

The numerical integration of the PDE’s was performed bycreased down to I0. This allowed to determine the critical

using a finite-difference scheme in which the three variablefarameters With~excellent accuracy. For instance, in the limit
\, 7, andm are discretized and the partial derivatives arer—1, we foundJ.=0.22125 for the inverse critical tem-
approximated by finite-difference representatipng]. The  perature of the Ising model on the simple cubic lattice. This
first derivatives with respect to are used to updateandc,  corresponds td;®=4J.=0.88500 for the n.n. lattice gas, in
at the temperature stept 1 by evaluating the first and sec- perfect agreement with the value obtained in Rf.(this is
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also within 0.2% of the best-estimate res[di8]). When
higher accuracy was required, for instance to determine the
asymptotic critical exponent@\\ was further decreased to
10" °. The integration was usually carried downkgT/Jc
~0.18(below this value, the spinodal lines in the vicinity of 0.4
7=1 are so close to the boundany=1 that we could not

integrate the equations with sufficient accuracy while keep- 0.21#
ing a reasonable spacingm; indeed, decreasingm forces -1
also decreasing\ in order to avoid numerical instabilities

[17]).

Before presenting the numerical results, it is instructive to
consider the high-temperature series expansion of the solu-
tion and compare it to the exact results. Sirzce 0 for A
—0, one can replace the Green’s functiB(z) by its ex- FIG. 1. SCOZA spinodal surface of the 3D Blume-Capel in the
pansion in powers of. We then expand andc, as double  (T—7—m) space.
series in XA and m?, z(\,7,m)=3,.Zpq(HINPM* and
Co(N\, T, m)=2pchq(r)7\pm2q. The coefficientsz,(7) and  tions, one needs to introduce a set of three different direct
ng(r) are polynomials ofr that satisfy a system of linear correlation functions. This implies to perform a double Leg-
algebraic equations at each ordeiimndm?. In the case of endre transform that defines a new Gibbs free energy, which
the fcc lattice €=12, P(z)=1+2z%12+2%36+52z%192 is a function ofm andx, the concentration order parameter,
+57°/288+ . . .) for which extensive series expansions instead ofm and A. The main interest of this alternative
have been derived by Saet al. [11], the results for the theory is that it allows to study the general spin-1 Hamil-
zero-field ordering  susceptibility yo==,G(r;m=0) tonian withK+#0 andL+#0. On the other hand, the numeri-
=dm/oh|,—, and the second moment of the correlationcal solution is more difficult as one has to solve three
function w,=3,r’G(r;m=0)=cé&?y, are coupled PDE’s instead of two. Details on the derivation of

these equations are given in Appendix A.

kT/(Jc)

0.6

kg Txo= 7+ 12723+ 6( 72+ 217°) 3%+ 2( 2+ 787°
Ill. RESULTS

~ 1 ~
+62174) 3%+ 5(7-2+ 23473+ 51154+ 23778°)J* In this section we concentrate on the SCOZA numerical
predictions for the phase boundaries. These are nonuniversal
1, . properties that are lattice dependent. If not stated otherwise,
107 +612r°+ 31851+ 342 69 the results presented here correspond to the simple cubic
lattice for which no systematic study has been performed in
+1 122462835+ - .. (22)  the literature.
The overall shape of the spinodal surface in tfier(m)
and space and the vicinity of the TCP are depicted in Figs. 1 and
2, respectively. We clearly see the evolution from the single
= 12773+ 2887532+ 2( 2+ 6673+ 2385r%) 3 curve atr=1 (the spinodal of the spig-mode), which has
a maximum atm=0 to the two symmetrical curves at
1 5 4 smg . 1 =0 with maxima located anh.= =+ 3, marking the end of the
+ 5(2407 +10080-"+133488>)J*+ 10 wing critical lines.
The T.(7), T.(A), and T.(x) phase diagrams in zero
X (7°+492r°+ 50931+ 1 156 41@°+ 8 474 742°) field are shown in Figs. 3-5. Second- and first-order phase

XI5+ ... (23 0.3

kT/(J¢)

Comparison with the exact series expansions shows that the
coefficients in both expressions are exact through order
(BJ)* while higher-order terms do not deviate significantly
from the exact ones. This is similar to the case of the gpin-
Ising model and we take this result as a strong indication that
the numerical predictions of the SCOZA should be very  _4
close to the exact solution of the model.

To close this section, let us note that the present theory
does not provide a&ompletedescription of the system. In
particular, it does not give any information concerning the

two correlation functionsGﬁzSz:(Sfo)—(Sf}(Sf), and
GﬁSZ:(SiSJ-z}—(Si}(S]—Z). In order to determine these func-  FIG. 2. Detail of the spinodal surface near the TCP.

041111-5



GROLLAU, KIERLIK, ROSINBERG, AND TARJUS PHYSICAL REVIEW B3 041111

| —— 77— 1\ 77—

06 [~

kgT./(Jc)

04 -

02 -

FIG. 3. Zero-fieldT.(7) phase diagram. Second-order and first-  FIG. 5. Zero-fieldT.(x) phase diagram. Second-order and first-
order parts of the phase boundary are shown as full and dashestder parts of the phase boundary are shown as full and dashed
lines, respectively. For numerical reasons, calculations have ndines, respectively. The inset describes the vicinity of the TCP.
been performed belowzT/(Jc)~0.18 (see text

ward just below the TCP, and theline appears to extrapo-

boundaries are shown as full and dashed lines, respectiveljate into the interior of the two-phase region in tiig(x)
The curves are quite similar to those obtained by series efhase diagrama continuous slope, however, cannot be
pansiong 11] and Monte Carlo simulationfs3] for the fcc  strictly ruled out by our calculationsAs is well known, the
lattice. In particular, we see that the slope of the phasgjope of the\ line and the slope of the coexistence curve on
boundary across the TCP is finite and continuous in bothhe 3He-rich side are not the same experimentally. This is
Te(7) and T(A) [specifically, we find T;/Jc)dA/dT|r = also predicted by renormalization-group analy8ik in con-
—0.045]; theT,(A) phase boundary is slightly concave up- trast with mean-field theor}8].

The accuracy of our calculation for theline in the A-T

08 T T L e plane can be checked for the special valueIn2 for which
a careful Monte Carlo calculation and finite-size study has
been performed by Bte et al. [18]. Our prediction for the

inverse critical temperaturé,=J/(kgT,)=0.3924 is in ex-

cellent agreement their estimalg=0.3934224(10). The ac-
7 curacy of the theory is thus the same as for the gpleing
model[2].

As noted earlier, the TCP corresponds to the point where
the convexity of the spinodal in th&-7 plane changes at
m=0. This is illustrated in Fig. 6, which shows the tempera-

4 ture dependence of the order parameter and the spinodal
lines in the tricritical region on the first-order side of the
phase boundaryobserve thatAm(7), the discontinuity in
the order parameter across the first-order phase boundary,
] moves away from the spinodal asdecreasés The coordi-
s L ! i nates of the tricritical point ardégT,/J=1.4160+ 0.0040,

' ' 7;=0.2114-0.0010 @A,/J=2.8457), x,=0.655-0.006,
where the uncertainties reflect the finite size of the grid spac-
S S ings. The predictions foil; and A, are in excellent agree-

- A/‘(‘Jc) 0 ! ment with the recent Monte Carlo estimates of Desé¢ir8j;

kgT:/J=1.4182-0.0055, A,/J=2.8448-0.0003 (these

FIG. 4. Zero-fieldT,(A) phase diagram. Second-order and first- numbers, however, are different from those quoted in Ref.
order parts of the phase boundary are shown as full and dashéd9], which locate the TCP neakgT/J=1.3900, A;/J
lines, respectively. The inset describes the vicinity of the TCP.  =2.849, andk;=0.61; if thesgunpublished results are cor-

kyT./(Je)

0.44 0.46 0.48 TP >
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kT/(Jc)
0.24
0.22
0.2 “L s ]
SN . . 0.4 0.45 05 0.55 0.6
0.181 ' N\ a,/(Jc)
| . ’ 0.1 — T T ]
5 0% [ TEP ]
S o )
005 | \—
0.1 I —— |
045 0.5 0.55 0.6
05 T ]
FIG. 6. Temperature dependence of the order parangitir 04 [ E
lines) and spinodal line¢dotted in the vicinity of the TCP on the 5 .t 3
first-order part of the phase boundary. 2 Tk 3
& 0.2 E_ cp _E
rect, our value ofx, is overestimated and too close to the  *'[ | E
mean-field predictionx;"” =2/3). Similarly, for the fcc lat- 0 . py
tice, we findkgT,/J=3.1116+0.0090, ,=0.2454+ 0.0010 kyT./(Je)

(A{/J=5.6520), andx;=0.658+=0.006, which we may
compare with the Monte Carlo estimates of Jain and Landau
[13] kgT,/J=3.072-0.024, A,/J=5.652:0.048, andx,
=0.56+0.02 (note that our value ok; is in much better
agreement with the series expansion estimate of 8gal. ~ zation is very well described, with an asymptotic exponent
[11], x;=0.665 33%; obviously, further work is needed to B=7/20=0.35, which is close to the exact val@e=0.33. It
locate precisely the TCP in the—T plane. Finally, our IS thus interesting to al_so investigate the grmgal beh_awor of
predictions for the bcc lattice atesT,/J=2.0264+0.0060, Our SCOZA equations in the critical and tricritical regions of
7,=0.2354+0.0010 (\,/J=3.7918), andk,=0.656+0.006 the 3D BC model. . , _
(to our knowledge, this lattice has only been studied by real- We fl_rs_t_ consider the behavior of the zero-field ordering
space renormalization-group methddg] that do not predict ~ Susceptibilityxo asT—T(7) along paths of constant for
accurately the location of the tricritical pojnt 7=7;. Accurate e\_/aluat|ons were relatively straightforward
At the TCP, the-line bifurcates into two symmetrical t0 perform in the disordered phase: we only had to gradually
wing critical lines. The projections of the wing boundaries decrease the spacidg\ as discussed earlier. Figure 8 shows
onto theA—T, A—h, andT—h planes are shown in Fig. 7. @ log-log plot ofkgTx, as a function of the reduced tem-
Mean-field theory8] predicts that the critical fieltl, should ~ Peraturet=1—T/T together with the corresponding effec-
go to infinity atkgT./Jc=%. We clearly see in Fig. 7 that tive exponent y.r; defined as the local slope
this value is overestimated. In fact, as noted earlier, the/log(kgTxo)/dlogt. In the region 1.6 7>0.25, it can be seen
present theory predicts thathc_)ioc at kBTC/‘JC that eaCh’)’eff('T) -reaCheS the Va.lu-e 2 far- 1075 as in the
= %kBTLS'HQ/JC:O_]_SS_ For the fcc lattice, this vyields C€a@se .of the sp_lri- _modgl, showmg fchat the asymptotic
keT./Jc=0.204, which is consistent with the value that cansPherical behavior is universal. This is no more true when

be extracted from the Monte Carlo simulations of Jain an®"® moves further away fromfic. However, in the range
Landau[13]. =10 %, a quasiuniversal behavior is still observed for 1.0

=71>0.6, and the critical behavior is governed by an effec-
IV. ASYMPTOTIC BEHAVIOR IN THE CRITICAL AND tive exponent that is close to the exact Ising valye
TRICRITICAL REGIONS ~1.24. On the other _hand, as approaches its tricritical
value 7;=0.211, there is an abrupt crossover to another be-
As mentioned in the Introduction, the SCOZA for the 3D havior, which is governed by the exponepi;;~1 over a
spin+4 Ising model has a nontrivial scaling behavior in the wide range of temperatures. There is good numerical evi-
critical region[2,3]. Above T, the asymptotic behavior is dence thaty.;; reaches 1 asymptotically at= 7.
the same as in the mean-spherical approximation and the For subcritical temperatures, it was more difficult to ob-
exponents are those of the spherical model. This spheric&hin accurate results in the vicinity @i, because of our use
scaling, however, is detectable only in a very narrow neigh-of an explicit method to integrate the PDE’s. Accordingly,
borhood of the critical point, and the effective SCOZA ex-we were only able to explore the critical behavior in a re-
ponents are close to the true Ising ones down to reducestricted range of temperatures 1—T/T.. Log-log plots of
temperatures of around 18. Below T., the scaling is nei- the temperature dependence of the order paranmtare
ther spherical nor classical with two scaling functions insteagshown in Figs. 9 and 10. Despite the limited range, it appears
of one[3]. Despite this shortcoming, the zero-field magneti-from Fig. 9 that in the second-order region well above the

FIG. 7. Projections of the wing boundaries onto the T, A
h, andT—h planes.
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FIG. 8. Log-log plot of the zero-field ordering susceptibility FIG. 10. Log-log plot of the prder parameteras afunct?on_ _Of
ksTxo @s a function of the reduced temperature T, /T and cor- the reduced temperature-Tr/ T, in the second-order and tricritical
responding effective exponenty;;. The different curves corre- €9I0NS.
spond tor=1.00, 0.79, 0.60, 0.40, 0.29, 0.25, and 0.22.

asymptotic exponeng,=1/4 for r=r,.
crossover to tricritical behavior, the slope of each curve has a Finally, we analyze the shape of the wing critical bound-
common asymptotic limit that corresponds to the SCOZAR'Y as it approaches the TCP. Figure 11 shows the log-log

prediction for the Ising mOdeI)BlsScigzga: 7/20. Figure 10 plots of the critical fieldh, and the magnetizatiom, as a

shows that for smaller values ef one needs to go closer to function of the reduced tgmperatureIC/Tt. Our numeri- .
T, to reach this asymptotic universal regime. Again, we Ob_cal data are consistent with asymptotic power-law behaviors
serve an abrupt crossover to another behavior as one enté}gverned by the exponents 5/2 floy and 1/2 form.

the tricritical region. Our results are consistent with the All the ab9ve nhumerical resullt.f, strongly suggest that our
theory describes the whole critical portion of the phase

0 T T — — T — T
P%a F T T T T T 9
z=7 C ]
//// 1 L N
pa r ]
i e | 5 |
02 » // 52 2 [ slope=5/2 ]
7 g f
slope=7/20 Y - sk 1
R 04 ] 4, L e 7
£ 1.6 14 1.2 - -08
g% log,(1-T./T,)
06 F U 7=0.68 - _| T T T T T T T T T T T ]
_04 — —
TToT=0288 - = slope=1/2 i
08 | — —17=0.98 E %—o.s - _
g | ]
T S I S S NSRS R B R
-25 2 15 - -0.5 0 -2 -1.5 -1
log,o(1-T/T,) log,o(1-T,/T,)
FIG. 9. Log-log plot of the order parameteras a function of FIG. 11. Behavior of the wing boundaries as the TCP is ap-
the reduced temperature-Ir/T, in the second-order region well proached; log-log plots of the critical fiel, and magnetizatiom,
above the crossover to tricritical behavior. as a function of the reduced temperature T, /T, .

041111-8



THERMODYNAMICALLY SELF-CONSISTENT THEORY . ..

PHYSICAL REVIEW B3 041111

boundary by the same exponents as the SCOZA equation fovhere y=2—a—28 (respectively,y;=2—a;—24;). Note

the spins Ising model[2,3] and that near the TCP there is a

also that becausm is used in Eqs(24) instead ofh, the

crossover to a tricritical behavior described by mean-fieldzero-field magnetization is solution of the implicit equation
exponents. This is supported, and can be further rationalizegh= 9(G/N)/9m=0. This implies that the singular part of this

by considering a heuristic scaling analysis of the coupleqquantity near the TCP obeysnsing~|t|BM+(g/|t|¢)
SCOZA PDE's, Eqs(16). The argument is summarized be- ~|g|BM L (g/|t|%). -

low and detailed in Appendix B.
Let us assume that close to the TCP, the singular part
the Gibbs free energy can be written as

~tjz-eg.| 3 M

gsing"’|t| g+(|t|¢’|t|ﬂ) (243
t m

—~ 2—a;pot

~lg| tgi(—lgm,'g'ﬁt), (24b)

where we have introduced the two scaling fields(T
-T)/T, and g=(7r—7)/n—at where (#/T)a
:(97)\/(3’T|Tt>0 is the slope of tha line at the TCRthis is
also the slope of the triple line beloW;, as we have seen

From the numerical results shown in Fig8)—(11), it

ogtppears thay,~1 (see the curve=0.22 in the lower part of

Fig. 8, Bi=~1/4 (see the curver=0.21 in Fig. 10, 2— «
—B~5/2, andB~1/2 (upper and lower parts of Fig. L1
[We have also good numerical evidence tBat1/2 from a
log-log plot of the discontinuity of the zero-field magnetiza-
tion as a function of [,—T)/T, across the first-order phase
boundary] All these exponents have their classical values,
and from the scaling relatioa+28+ y=2 (respectively,
a;+ 2B+ v,=2), we deduce thay=2 and a;=3%. These
values are all consistent with a crossover exponrgat2.

We show in Appendix B that the scaling ansatz, Eg4)
or Egs.(26)—(27), is compatible with the asymptotic behav-
ior of the PDE's, Eqs(16), in the tricritical region. This

that the slope of the phase boundary is finite and continuougnalysis indicates that a nontrivial scaling is found when the

at the TCP. Equations(24) have the form of the standard
tricritical scaling hypothesi$9,10], except that we use the
magnetizatiorm instead of the magnetic field as variable.

G(+) andgzi) are the scaling functions, where the subscript

(%) represents the sign ofi.e., denotes when the tempera-
ture is above or below the tricritical temperatifre When

[t|—0 with g=0, the TCP is approached tangentially to the

phase boundary in the symmetry plame 0 [and Eq.(243

is then the convenient form of the scaling hypothgsis |

exponents obey the two relations= ¢ and y=4p8, which

are satisfied by the classical values. Moreover, one finds that
the scaling function of the zero-field susceptibility abdye
obeys an equation that is similar to the asymptotic SCOZA
equation studied in Ref3] for the spins model. It can be
inferred that the critical behavior of the present theory along
the\ line is the same as the SCOZA prediction for the Ising

model. This is consistent with the expongért: 7/20, which

whereas the TCP is approached with a finite angle with théS observed numerically in Fig. 9 along the high-temperature

phase boundary whegw 0 [and Eq.(24b) is the convenient
scaling formj. This defines two sets of exponents, ¢, 3)
and (a;,¢;,B:) that are related through2a,=(2— «a)/ ¢,
¢=1l¢ and By= B/ ¢.

part of the\ line. This universality appears to hold along the
wing critical lines too since the boundary condition to Egs.
(16) at the end of these linefor h,— *=«) is again the
SCOZA PDE for the Ising model, as explained in Sec. II.

Since SCOZA is thermodynamically self-consistent, the

scaling behavior of the Gibbs free energy near the TCP is
In particular, the

inherited by its various derivatives.
asymptotic behavior of the magnetic fighd= 9(G/N)/dm is

J J
~ 2—a—B__, ~ 2—ay— By ___ ot
h~|t| &vgi(u’v) lg|=™ t&vtg:(uuvt%
(25)

whereu=g/|t|?, v=m/|t|? (u,=t/|g|%, v,=m/|g|?), and
the inverse ordering susceptibility, *= 9(G/N)/om? and
the singular part of thé'He concentration order parameter
p=1—x=49(G/IN)/dA obey (up to irrelevant multiplying
factorg

9 7
Xo =" G (up)=[g]"— G (U o) (26)
v? duy
and
)
psing%_|t|2 “ ¢£gi(u'v)
~ gl gl ey, (@D
gu, > = rTe

V. CONCLUSION

The present paper shows that a thermodynamically self-
consistent OZ approximation provides a very good descrip-
tion of the properties of the 3D Blume-Capel model in all
parts of the phase diagram. As in the case of the Ising model,
nonuniversal properties such as the shape of the phase
boundaries and the location of the tricritical point are pre-
dicted with remarkable accuracy. Moreover, there is good
numerical and analytical evidence that the SCOZA correctly
predicts a universal critical behavior along thédine and the
wing critical lines(with a zero-field magnetization exponent
0.35 that is very close to the true Ising valuas well as a
crossover to tricritical behavior governed by classical expo-
nents. Therefore, the SCOZA proves to be a powerful tool
for studying spin systems that exhibit first-order and/or con-
tinuous transitions. This is confirmed by further work on the
ferromagnetic spin-3/20] and Pottd21] models.

APPENDIX A

In this Appendix, we derive the SCOZA equations for the
most general spin-1 Hamiltonian with n.n. couplings,

041111-9



GROLLAU, KIERLIK, ROSINBERG, AND TARJUS PHYSICAL REVIEW B3 041111

ASS
H=Hgc— K> FS-LY, SS(S+S), (Al ¢ —c k)
B¢ <|2]> Si ] <|Zl> Si J(S J) ( ) G ( ) CSZSZ(k)CSS(k) CSSZ(k)Z

(Adc)

which is a model for ternary mixturg46]. The solution of We now assume that the range of the direct correlation
these equations also provides a complete description of th@nctions is limited to n.n. separation, i.e
pair correlation functions of the Blume-Capel model. These

functions can be generated by introducing site-dependent

fields h; andA; in the Hamiltonian(A1), which yields CSq k) =c5T1— s (K1, (A5a)
O (S~ (SNS) -~ (A2a €%k =3 11~ Lssh (K], (ASD)
! T Ghiahy”
2 CSF (k) =c§ ST1- Loeh (K], (A5C)
s$_ 2 2y —
Gij” =(SS))—(SKS)H= i (AZb)

where thecy’s and thel’s are functions ofl,m, andx to be
determined. This fixes the form of the correlation functions
2% in r space, and after some calculations we find

s?s? 22 2\ /o2 I°F
Gii” =(SS)—(SNS)=— ==  (A20)

AN A S s
o GS9r)=G5Yr=0)

We then perform a double Legendre transform that takes the (21— {22)P(24,1) — (25— {22) P(2,,1)
fields h; and A; into m; and x;, respectively, where=1 X
—(S?)=1-3dFloA;. This defines a Gibbs free energy (21~ {ex2)P(21) = (22~ {252) P(22)
G(T,imY {IxH)=F+=him—=;A;(1—x), which satisfies
h;=0G/om; andA,=dGl/dx; . G is the generating functional
of the direct correlation functions,

(A6a)

GS¥(r)=G%%(r=0)

o rizfm | (A3a (#1Lse)P(21) ~ (22~ Ls9)P(22.1)
e (21— {s2)P(z1) — (22— {s2)P(2,)
. (A6b)
pY=— : (A3Db)
o G¥¥(1)=6%%(r=0)
G (21~ £s9P(z1,1) = (22~ £s9P(22.1)
cTs= A3
1 (A3 G 9Pz (2 Ls3P(2)
that are related to th&’s via a set of Ornstein-Zernike equa- (A60)

tions. In the limit of uniform fields, these equations in Fou-

rier space take the forrﬁ:(k)é(k) 1 whereé(k) and whereP(z,r) is the lattice Green’s function defined by Eq.

(10), and z;,z, are related to they's and the!’s via the
C(k) are symmetrical square matrices. This readily yields (eg|ations

- C¥ (k) + [ = 2R2 s g+ (1— R2) (21 + A7
GSYK) = gy _ , Ad {sst {2 {sgt( Nz1+25), (A7)
. ek e S
S lsdwe=Rilset(1-R)ziz;,  (ATH)
A o202 C
G¥¥(k)= = - - ., (Adb
W= e etz Y and

R {ziP(21) = 2:P(25) — {sd P(21) — P(z) Yz P(21) — 2,P(2) — {2l P(21) — P(22) [}
Ro 21P(21)~2,P(2) — {s9[ P(2) ~ P(2))] '

(A8)
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whereR=CSS‘Z/(cgsc(S,‘ZSZ)”2 andRy is the high-temperature G3{r=0)=1-x—m? (A9a)
limit of R, which can be calculated exactly, as explained
below. Note that in EQSA6) we have eliminated they's to GS§(r=0)= mx, (A9b)
introduce the on-site values of the correlation functions that
are simple functions of the order parameterandx. Indeed, Gszsz(r =0)=x(1-X). (A9c)
sinceS; can only take the values 81, one hagS’)=(S))
and(S")=(S%), so that In terms of these variables, one also has
|
N 1- z,P(zy) —2,P(z,) — P(z,)—P(z
ESSKk=0)= {ss 1P(21) = 2,P(25) — {252 P(21) ( 2)], (A102)
(1-R?)(1—x—m?) 2,-2
. 1- R? 2,P(z1) —2,P(z) — P(z,)—P(z
CSSZ(kIO)I—( {s2)R” 2,P(21) = 2,P(25) — {s [ P(z1) — P( 2)], (AL0b)
(1-R*»xm 2172
- 1- 21P(z1) —Z,P(2,) — P(z;)—P(z
Cszsz(k=0)= {2 1P(21) —2,P(2,) — {sd P(z;1) — P( 2)]. (AL00)
(1-R?)x(1—x) 2,-7

Three unknown functions remain to be determined, and it is convenient to chpase andR and to use Eq9A7) and
(A8) to calculate the{’s. The three additional equations that we need are obtained by imposing thermodynamic self-
consistency. On the one hand, the enthalpy is given by

dGIN  Jc Kc
g = 216 Ur=e+mil- S (G5 (r=9)+(1-02-L[G5¥(r=e)+m(1-x)]. (A11)
On the other hand, we have from Eg@A3)
. G
C3k=0)=—, (A12a)
am
. 9°G
S (=)= —
Co (k=0 =~ - —, (A12b)
. 9°G
EFF(k=0)=—. (A120)
ax
This yields the three Maxwell equations
aCSYk=0) L1 PGS r=6)+ ;G S (r=6)+2a,G5%(r=e)] "
aCS(k=0) 1 G r=6)+ ;S (r=6)+2a,G5%(r=e)] b
DA JMax ' (AL13b)
s (k=0) 1 G r=e)+ ;G ¥ (r=e)+2a,G5%(r=¢)] ALa
) 2 , (A130)
where\=BJc, a;=K/J, anda,=L/J. codes the full thermodynamics of the model Hamiltonian

These equations, together with E¢87) and (A8), con-  (Al). The initial conditions forJ=K=L=0 are easily ob-
stitute a set of three PDE’s in the unknown functionstained since the correlation functions are then nonzeno at
Z.(A,m,X), Z,(\,m,x), andR(\,m,x), whose solution en- =0 only. One hag;=2z,=0 and from Eqs(A4) and(A9)
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R mx (A14) L PR (B5)
O [x(1—x)(1—x—m?)]¥2 a2

It should be noticed that in the case of the Blume-Capel For the sake of simplicity, we only consider the cdse
model(for which a; = a,=0), this SCOZA is different from >0 (i.e., T>T,), but a similar analysis can be performed for
the one presented in the main text. This can checked for<0. Then Egs(B2) yield
instance by computing the high-temperature expansion of the

2 2 2
solution. Both theor;es yield zero-field properties that are,,-, YEZ — du JES s JES ra(g—1yr s
exact through ordex”. It is unclear which one provides the Ju dv Jau
best numerical predictions. ) )
=1— 1 t7/2*2[3(9 E+ _t7*¢(9 R+ (B6a)
APPENDIX B 2 ov2 w2 |’
In this appendix, we show that the tricritical scaling hy- JR IR
pothesis, Egs.24) or (26)—(27), is consistent with the tl‘“[(z—a—¢)R+—¢u + —Bu +
asymptotic behavior of the SCOZA PDE’s, Eq46). The au dv
notations are those of the main text. JR. 1 JE JR
To this end, it is convenient to rewrite the PDE’s in terms +a(¢—1)t2‘“‘¢—+:—[t7’2—+— 2-am¢p L
of the two variables€=(1—2z)¥2 and p=1—x. £2 is pro- u 2 ou ou
portional to the inverse susceptibilify, * and p=G(r=0) (B6h)

+m?=P(z)/co+m?. At the TCP, we haveE=0 and p _ _
=p,. For t—0, m—0, and p—p,, Egs.(16) take the Where we have used the scaling relatign-2—a—28,
asymptotic form which results from thermodynamic self-consistency. If the
crossover exponen is greater than Iwhich is usually the
case and is indeed found numericgllthe first term in the
, left-hand side of Eq(B6a) may be neglected asymptotically.
A nontrivial scaling is then found when the exponents are
(B1la) related through the two relationg= ¢=4p. For the same
reason we may neglect the first term in the left-hand side of
Eq. (B6b) and we obtain the relationy=2(2—a— ¢)
(which is not independent from the preceding onésctu-
(B1b)  ally, we expect that as in the SCOZA for the Ising model, the
enthalpy is analytic irm? and T— T, when approaching a
wheret=(T—T)/T;, \=cJ/(kgTy), ér=(r—7)/7, and  cyitical point from a disordered phase, which corresponds to
we have used the expansion of the 3D lattice Green funct|ony:2 and 8=1/2. (At the tricritical point, them? term of
for z—1, P(2) ~P(1)[1-b&+ Q(gZ)], whereb is a posi-  coyrse vanishesThe scaling functions satisfy the two non-
tive constanf22]. In these equations and in the following, all ivial PDE’s
derivatives are taken at the TCP.

bpr ?E  I%p
P(1)=1/m?® om?

P(1)% 982 (P(l)—l)
pt)\t W_l_ 2

ap 1 P(1)—1| bp, 9 dp
e IVEES s
a2 P(1) |P(1)—14d67 967

By suitably rescaling the variables a&—bp,/[P(1) aEi 1 9%(E, —R,)
116, t—AbPIU[P(L)(P(1)—1)1%,  m—m/[P(1) alp-1)—=l-g—— -, (B7a)
—11%2 and 87—b2p3{P(1)[P(1)—113(1— =)} 67, we dv
obtain the two simplified equations JE JR
+ +
=[1+2a(¢p—1)] (B7b)
652 . 1 6,2(8_p) (Bza) Ju Ju
ot 2 gm? Using Eq.(B5) to eliminate one of the functions, we finally
obtain a single equation fdg ,
dp 1 a(E—p)
= 2
o 2 96t (B2b) 4= 1 1 P°E B8)

au 2 g2’
We now introduce the tricritical scaling ansatz trand
for the singular part op, according to Eqs(26) and (27), where we have used the rescaling-2/2a(¢—1)+1]u.
(Note that the multiplying factor is positive sinee>0 and

E~|t|"?E.(u,v), (B3)  ¢>1.) Of course, this equation must be accompanied by
some boundary conditions. These are obtained from the ana-
psmg~|t|2*“*¢Ri(u,v), (B4) lytical requirements that the scaling functions must satisfy

near the TCP and in the vicinity of the critical lines and the
whereu=g/|t|? andv=m/|t|#. Because of thermodynamic coexistence surfacesee, e.g., Ref{10]). It can be shown
self-consistencyk.. andR.. obey that these boundary conditions are also compatible with the
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SCOZA equations. The other functiét. can be obtained as ; pehave asi—uy~t andv ~m, whereu, is a constant. As

[1+2a(¢—1)]R.(u,v)=E, (u,v)—v?+R,,, WhereR,,

is a constant that can be determined by the boundary condi-

tions.

Equation(B8) has an important consequence for the scal- ot

ing behavior near the TCP when one approaches\tfine

a consequence, E@B8) can be rewritten as

2
JEL

1 J°E.
2 om2

(B9)

along a path at fixea. The convenient temperature variable ThiS is precisely the asymptotic SCOZA equation for the

is thent:[T_T)\(T)]/Tt , which measures the distance from

\ line at fixed =, so thatt=t+t,, wheret,=[T,(7)
—T,J/T, defines thex line near the TCP. Wheft|—0, or

t—t,(7), the scaling fieldg behaves ag—gy,~t, where
0o=(7—7)/ 7 is a constant, and the scaling variableand

spin-4 Ising model that has been studied in H&f. (with E ,
playing the role of the variableé in that reference There-
fore, one expects that the critical behavior above and below
the critical temperatur@&, (7) will be identical to that of the
SCOZA for the Ising mode]with for instanceBz?/ZO for

the zero-field magnetizatiom(t)].
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